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Abstract

We put forward a simple, individual based model in which agents face an exploration/exploitation
tradeoff. Optimal behavioural policies are analysed both from reinforcement learning (RL)
and fitness optimization perspectives. Having fixed a minimal set of model parameters, we
find the RL and evolutionary approaches can be made equivalent by appropriate choice of
discounting parameter γ in the RL setup. Our results lend support to the use of exponential
discounting in reinforcement learning algorithms.

Keywords— Multi-armed bandit, reinforcement learning, evolution, exploitation, explo-
ration, foraging.
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1 Background and motivation

Agents (people, algorithms, squirrels) tend to prefer larger rewards to smaller ones. At the

same time, they tend to prefer immediate (as opposed to delayed) gratification. Intuitively,

we see two rationales justifying impatience.

1. Risk that a future reward not be received (due to death of recipient, for instance).

2. Opportunity cost – an immediate reward can be translated into further compounding

benefits, whereas while waiting for a future reward, we cannot compound.

For a broad review of discounting, see [FLO02]. The quantitative discounting problem with

which we concern ourselves presently is: how ought an agent to decide between flows of

rewards r = (r0, r1, r2, . . .) and r′ = (r′0, r
′
1, r
′
2, . . .)? Of particular interest is the case where r′

is initially lower than r, but eventually gets larger. For instance, compare

• r = (1, 1, 1, 1, . . .) and

• r′ = (0, 0, 0, . . . , 0, 2, 2, 2, 2, . . .).

An agent’s preference for larger rewards is in opposition to its impatience. This case is of

particular interest to us, and finds applications in all of biology, zoology, economics, psy-

chology, and computer science, to name but a few.

1.1 Classical discounting approach

Determining the present value of future rewards is common in economic problems. The

approach almost universally used is to discount future rewards to present value, and pick

the alternative resulting in maximal present value. A one time reward F received at a delay

t ≥ 0 is discounted to present value P via P = ∆(t) · F . We call ∆(t) a discounting function.
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An agent using discounting function ∆(t) evaluates the present value of flow (r0, r1, r2, . . .)

as

P =
∞∑
t=0

∆(t) · rt.

1.1.1 Hyperbolic discounting

Experiments with both human and non-hum animals find that hyperbolic discounting is preva-

lent; see [Soz98] for a review. Under hyperbolic discounting, agents use

∆(t) =
1

1 + ht

where h > 0. Intuitive rationale for hyperbolic discounting is scarce, and seemingly irra-

tional behaviour abound. The reader will with enthusiasm verify that preference reversals are

predicted by hyperbolic discounting: if F1 < F2 and t < s one finds that

F1

1 + ht
>

F2

1 + hs
, whereas

F1

1 + h(t+ t′)
<

F2

1 + h(s+ t′)

for appropriate choice of t′. The imposition of an additional delay to receipt of future re-

wards can propmpt agents to change from a smaller, more immediate reward to a larger,

more delayed reward.

1.1.2 Exponential discounting

In contrast to hyperbolic discounting, exponential discounting finds plenty of motivation in

simple and intuitive models, whereas it is less commonly observed empirically. At a high

level, the models which motivate exponential discounting posit that a risk neutral agent
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should be indifferent between rewards which are equal in expectation, so that we have

∆(t) = e−rt

for some r > 0. Exponential discounting also finds natural motivation in fincance, but “that

is another story and shall be told another time.” Exponential discounting’s abundance of

intuitive rationale, as well as well as its simplification of analytic formulae, have made it the

most popular choice in economic models involving intertemporal choice.

1.2 Reinforcement learning

It is beyond the scope of this project to provide anything resembling an appropriate treat-

ment of reinforcement learning (RL) to the uninitiated (such as the author). Nevertheless, a

high level description of some processes is possible, and provides thought provoking con-

nection to the theory of discounting. Reinforcement learning is so called because it involves

an agent who interacts with its environment, receives feedback (in the form of a reward),

and then repeats the process. Repeated interactions with an environment result in an RL

Figure 1.1: Reinforcement learning, at a high level.

agent receiving a (potentially stochastic) stream of rewards (r0, r1, r2, . . .). The process via

which an RL agent makes its decisions is called its policy, denoted π. For an agent with policy
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π, denote its expected reward (at time t) by Eπ [rt]. RL agents wish to choose an optimal policy

π∗; standard practice in applied and theoretical RL is to fix a discount parameter γ ∈ (0, 1),

and choose a policy π∗ which maximizes its total discounted reward:

π∗ ∈ argmaxπ

∞∑
t=1

γtEπ [rt] .

RL algorithms almost universally discount exponentially, with little in the way of rigorous

theoretical justification for this choice. Furthermore, while the discounting parameter γ al-

most certainly impacts optimal policy choice, how one is to choose γ ∈ (0, 1) is most often

arbitrary. See [FGB+19] for some background on the problem of intertemporal discounting

in RL processes.

1.3 Evolutionary methods and perspectives

Fitness is the currency of evolutionary theory. For some background, see [SK13]. Through-

out, we assume all populations considered grow exponentially, that is, according to Pop(t) =

Pop0e
rt. Fitness is then defined by the Lyapunov exponent, r, which is the population’s unit

time growth rate. A demographic matrix is a square matrix B = (bij)
n
i,j=1, where bij is the

probability that an individual move to category i from j. It is a standard result in the theory

of structured population growth that the largest positive eigenvalue of B is its stable growth

rate, that is, its Lyapunov exponent, or our chosen measure of fitness.

1.4 Motivating philosophy

Conjecture 1.1. Humans and non-human animals discount hyperbolically because it is evolution-

arily optimal to do so.
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Beyond simplisti models coming from risk analysis or financial math, there is little rea-

son to assume agents discount exponentially. Nevertheless, exponential discounting is om-

nipresent, and in particular is used as shown by RL algorithms. In this paper, we proceed

to introduce a simple model which can be analysed both as an evolutionary process and as

an RL problem. We seek to understand if the exponential discounting employed in RL algo-

rithms can be reconciled with a natural, evolutionary, optimzation process. While a priori

the two approaches seem entirely disconnected and independent, we will see that they are

intricately linked.

2 The model

2.1 The bandit

Let us assume a biological setting. Model the daily foraging for nuts by a squirrel via a ban-

dit (slot machine), and assume that payoffs from the bandit are translated into reproductive

rewards. That is, if the bandit pays β, then we interpret that a squirrel has β offspring.

• Bandit with infinitely many arms.

• Three types of arms:

1. null giving arms (no reward received when pulled)

2. low giving arms (reward of βl)

3. high giving arms (reward of βh)

• Null, low, and high arms have frequency (1− l−h), l, and h respectively and each one

in [0, 1].
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2.2 Model squirrels

When playing with the bandit, squirrels face an exploration/exploitation tradeoff when at a

low arm. Choosing to stay results in a guaranteed, albeit low payout. Choosing to explore

results in a duration of time during which null and low arms are pulled, until after a delay

(in expectation of length 1/h) a high arm is pulled. To build our model, we need some

assumptions on squirrels.

• All squirrels are biologically the same. Squirrels only vary in searching policy.

• Squirrels survive each night with probability s ∈ [0, 1].

• Squirrels, at the beginning of each day, can choose to stay or search.

– To stay means to pull the exact same arm as yesterday, receiving the same reward.

– To search means to go to a different arm. Since we assume infinitely many arms,

being at a specific arm type does not vary the probability of finding other arm

types. Searching incurs no direct cost.

• Rewards translate to offspring directly. Assume offspring start without arm assign-

ment, and so search immediately by default. Reproduction is asexual – a single squir-

rel pulls an arm and gets offspring. In fact, squirrels do not interact in any way.

• Terminology: a squirrel is defined by its search policy, which we will denote π.

2.3 Policy space and fitness

Consider an evolutionary setting, within which model squirrels inherit the search policy

of their parent. We wonder: which strategy optimizes fitness? To address optimal fitness

concerns, consider the following reduction.
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• At a high arm, model squirrels should never go searching since they won’t get any-

thing higher.

• At a null arm, model squirrels should always search since you can’t possibly do any

worse and searching incurs no direct cost.

• Therefore, the only time model squirrels ever wonder whether to search is when

they are at a low arm.

We consider the greatly reduced space of search policies {πε : ε ∈ [0, 1]}, where having policy

πε means that, when at a low arm, you search with probability ε and stay otherwise. From

our setup naturally emerges a demographic matrix. For a model squirrel with search policy

πε, set

Bε =


1− l − h βl + ε(1− l − h) βh

l (1− ε) + εl 0

h εh 1

 · s.
With the machinery of Bε in place, we can address the question of optimal fitness. We opti-

mize fitness by choosing ε∗ so as to maximize the leading eigenvalue of Bε:

ε∗ = argmaxε∈[0,1] Leading Eigenvalue (Bε) .

2.4 Example and questions

The model in abstract can be a bit tough to wrap one’s head around, so here is a worked

example of the life of a single model squirrel, who we call Sam. Assume that l = 0.3, h =

0.05, βl = 1, βh = 10, and s = 0.99. Suppose Sam’s search policy involves ε = 0.5.

1. Sam is born without an assigned arm, so he searches. He finds an arm, pulls it, and

finds no nuts. He is at a null arm!
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2. The next day, Sam has no desire to stay at his null arm, so he searches for another one.

Low and behold, he pulls another arm which gives him no nuts.

3. The following day, Sam again chooses to search. He finds a new arm, pulls it, and

gets one nut. He has found a low arm, and is relieved. As a result of finding one nut,

he produces an offspring, who goes on to live a life analogous to Sam (but entirely

independently – offspring do not follow their parents).

4. Today, Sam faces a dilemma. If he leaves his current arm in favour of trying to find a

high arm, he will likely find nothing for a while. He flips a coin, and chooses to stay,

producing another offspring in the process.

5. Having chosen to stay yesterday, Sam again flips a coin today. It comes up opposite to

yesterday, and so he chooses to search.

6. . . .

7. Eventually, after this process goes on for quite some time, Sam pulls a high arm and

therefore stays there until eventually his 1 in 100 luck runs out and he dies.

Given parameters l, h, βl, βh, and s, we propose the following list of questions.

• What search probability ε∗ optimizes population growth?

• For fixed discount parameter γ ∈ (0, 1), what search probability εRL(γ) maximizes the

reinforcement learning objective function?

• How do each of ε∗ and εRL(γ) vary as functions of the model parameters l, h, βl, βh, and

s?
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• What is the relationship between ε∗ and εRL(γ)? Are they at all similar, or fundamen-

tally different? Can the evolutionary objective of fitness maximization be expressed in

the language of reinforcement learning?

3 Results

Proposition 3.1. The evolutionarily optimal search probability ε∗ is independent of survival proba-

bility s.

Proof. If A is any matrix, then Av = λv ⇐⇒ sAv = sλv. So all eigenvalues are multiplied

by s, and thus the maximal eigenvalue of our demographic matrix corresponds to the same

value ε∗ for all s ∈ (0, 1].

Proposition 3.2. For any model parameters l, h, βl, βh, s, and γ, both the evolutionarily and the RL

optimal search probabilities are corner solutions: ε∗, εRL(γ) ∈ {0, 1}.

Remark. This result hold numerically across a wide variety of parameter values. An analytic

proof has yet to be found.

Theorem 3.3. Let the low arm payout βl > 0 be fixed, and set s = 1, so that model squirrels live

forever. Then there exists a unique γ∗1 ∈ (0, 1) such that, for every l, h, and βh, we have ε∗ = εRL(γ∗1).

More explicitly,

ε∗ (l, h, βl, βh, s) = argmaxε

∞∑
t=0

(γ∗1)t Eε [rt] .

Remark. In words, the theorem says that for fixed low payout, the problem of optimizing

fitness is equivalent to a uniquely determined RL optimization process. The theorem pro-

vides strong evidence for exponential discounting by squirrels in this model setup. As with

the previous proposition, this result holds true numerically for all parameters tested, but no

analytic argument has been found. Figure 3.1 displays a numerical estimate of γ∗1 = γ∗1(βl).
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Figure 3.1: The opportunity cost parameter γ∗1 as a function of βl.

Theorem 3.4. Let βl be fixed, and let γ∗1 be as in the previous theorem. The RL/evolutionary equiv-

alence result from the previous theorem holds for for s < 1, and the corresponding discounting

parameter is given by γ∗s = γ∗1 · s.

Proof. Let rt be the (stochastic) reward received at time t, and let r̂t be the reward conditional

on still being alive. Then E [rt] = st · E [r̂t]. By Proposition 3.1 and Theorem 3.3,

∞∑
t=0

γt1E [r̂t] =
∞∑
t=0

(sγs)
tE [r̂t] ,

from which the result follows.
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Remark. Theorem 3.4 decomposes the RL discounting parameter γ∗ into two componenents:

risk and opportunity cost. Risk accounts for the possibility that a future reward might not be

realized due to death of the recipient, whereas opportunity cost is the lost opportunity for

compounding benefits of an immediate reward. Risk is accounted for in s, while opportunity

cost is in γ∗1 .

4 Conclusion

In this paper, we put forward a foraging model in which squirrels are routinely faced with

an exploration/exploitation tradeoff. Squirrels are made to choose between a small but as-

sured payout, βl, and searching an unknown length of time for a larger reward, βh. The

model is analysed both from the perspective of maximizing evolutionary fitness (measured

by the Lyapunov exponent) and as an RL problem. From both perspectives, we find that op-

timal search policies are deterministic: squirrels should either always search or always stay

put. Perhaps more surprisingly, we find that having fixed a survival probability s ∈ (0, 1]

and low arm payout βl , there exists a unique discounting parameter γ∗s ∈ (0, 1) for which

the RL and evolutionary approaches lead to the same optimal search policy. We show that

the discounting parameter γ∗s can be decomposed into an opportunity cost component as

well as a risk component: we can write γ∗s = γ∗1 · s, where γ1 is the unique γ∗ for fixed βl

when s = 1.

Our results provide a simple and intuitive rationale for exponential discounting in the con-

text of foraging and exploitation/exploration tradeoffs. Further research is needed in order

to determine the exact origin of the opportunity cost parameter γ∗1 . We posit that our present

model is too hands on, in that its specificities obfuscate the likely simple and intuitive ab-
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stract explanation for our findings. A future area of reserch, therefore, is to propose more

abstract models which produce the same results. These models will allow us to prove key

results which are known to be true in this paper, but for which we are unable to write a rigor-

ous mathematical proof. For instance, it would be nice to prove that optimal search policies

are deterministic, and that the right choice of γ∗ leads to equivalence between RL and evo-

lutionary optimizing. Nevertheless, this project is a reasonable start to understand under

exactly what circumstances individual exponential discounting yields optimal evolutionary

outcomes.
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A Bandit results

Here are some bandit results.

A.1 Optimal policies are corner solutions

Our aim is to select policy πε among ε ∈ [0, 1] for which the leading eigenvalue of Bε is

maximal. Denote the optimal policy search probability by ε∗. Existence of such a value

is clear, since the mapping Bε 7→(its leading eigenvalue) is a continuous function on the

compact domain [0, 1]. We claim that ε∗ ∈ {0, 1}. While a rigorous proof is beyond the scope

of our (my) capabilities, the result holds experimentally across all values for l, h, βl, and

βh tested. Furthermore, there is an intuitive argument to be made from the perspective of

biology: all days are the same, and searches are independent. If a squirrel has any inclination

to search today, then it should just as well search tomorrow. On the other hand, if it chooses

not to search today, then it should not search tomorrow. The reader may not be entirely

satisfied with such an argument, and I empathize with them – nevertheless, we shall take it

as given throughout the remainder of this paper that ε∗ ∈ {0, 1}.
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Figure A.1: ε = ε(h), with l = 0.3, βl = 1, and βh = 10

A.2 Understanding ε∗ = ε∗(l, h, βl, βh)

The optimal policy ε is determined by a large number of parameters. As such, it can be

difficult to wrangle and properly understand. That ε∗ ∈ {0, 1} helps us significantly in this

task. The figure above illustrates an important point. To understand the plot of ε∗(h) (with

other terms fixed), it is sufficient to understand where it is discontinuous. Let hdisc the value

of h such that ε∗(h) is discontinuous at hdisc. We can then allow another parameter to vary,

and determine its corresponding hdisc. For instance, if we allow βh to float, we can consider

hdisc = hdisc(βh).
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Figure A.2: hdisc = hdisc(βh), with l = 0.3 and βl = 1

The above figure has a lot of information packed into it, so some unpacking might be helpful.

For 0 ≤ βh ≤ 1, we interpret that ε∗(h) is discontinuous at h = 0.7. Given our fixed value

of l = 0.3, this means that ε∗ = 0 no matter what h is. Is this reasonable? Well, if βh ≤ 1 =

βl, then our “high” payment is in fact lower than the “low” payment, so that it is indeed

desireable that ε∗ = 0. A relatively higher paying arm should never be left in search of a

lower paying arm. As βh increases past 1, the discontinuity point drops. Initially, when βh

is only marginally larger than βl, the discontinuity point occurs when h is large, not far off

from its maximal value of 70. This means that only marginally larger payments necessitate

a high degree of confidence that a squirrel will find it quickly in order to make searching

worthwhile. Later, for instance as βh = 20, the relative abundance of high arms dips down
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below 2%, which has a natural interpretation. Squirrels exhibit more patience for larger

rewards.

B RL results

Here are some results from the RL optimization process.

B.1 Computational work

In an ideal world, this would be a section on probability and I would present a neat deriva-

tion for clean, closed form expression for Eε [r̂t]. Alas, it was not to be. All results used for

computation come from the following clever trick: remove all birth and death terms from

Bε. Then what remains is a migration matrix. Since v0 := Bε · (1, 0, 0)ᵀ is a three dimensional

vector with each component representing the probability of being at a null, low, or high arm

respectively, we have that Eε [r̂0] = v20βl + v30βh. More generally, with vt = Bt+1
ε · (1, 0, 0)ᵀ,

we have Eε [r̂t] = v2t βl + v3t βh. Superscripts denote components, that is, vt = (v1t , v
2
t , v

3
t ). The

point here is that we efficiently compute the expected payout on a given day conditional on

still being alive, and this is precisely how we do it. To compute the RL objective function,

we simply take the first 1,000 terms in the summand (or so, depending on the context).

B.2 Corner solutions again

When trying to optimize the Lyapunov exponent we found ε∗. We employ the conven-

tion that ε∗ corresponds to the optimal policy search probability in the evolutionary sense,

whereas εRL is the search probability maximizing the RL objective function

∞∑
t=0

γtEε [r̂t] .
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Similarly to before, I claim that εRL ∈ {0, 1}, and as before, I am unable to prove this claim.

The claim has been checked fairly exhaustively for different values of l, h, βl, βh, and γ. Nev-

ertheless, a proof would be nice, but not in this paper.

Figure B.1: εRL = εRL (h), with l = 0.3, βl = 1, βh = 10, and γ = 0.8.

In this instance, a value of γ = 0.8 was arbitrarily chosen. The value of γ changes the

discontinuity point; higher γ lead to more patience, that is, a higher value of γ will lead to

lower value of hdisc.
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B.3 Discontinuity point in εRL(h) as a function of βh

Figure B.2: Discontinuity point in optimal ε for l = 0.3 and βl = 1,
various optimality conditions.

We interpret the figure as meaning that more steeply descending curves indicate higher de-

grees of patience, meaning a higher tolerance for a low probability of pulling a high arm.

Marginally increasing βh beyond 1 = βl, a lower value of hdisc(βh) implies an earlier switch

from never searching to always searching from a low arm. We see that for γ = 0.99 (weakly

discounting in the RL objective function), the curve is most steeply downward sloping. This

is to be expected, since highly valuing future rewards makes a squirrel more likely to search

until finding a high arm.
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Perhaps most interestingly displayed in the figure is that the function hγdisc(βh) may lie either

below or above the evolutionary discontinuity curve, dependent on the value of γ. A nat-

ural question arises: for fixed l and βl, does there exist a value, call it γevolutionary, such that

ε∗(l, h, βl, βh) = εRL(l, h, βl, βh, γevolutionary) for all h and all βh? Essentially, can we tune γ so

as to have the RL curve be the same as the evolutionary curve? The answer, eyeballing it, is

yes. Numerically, this result holds as well, and leads to our Theorem 3.3. We numerically

compute the approximate value for γ∗ and find that having fixed βl and s, γ∗ is uniquely

determined.
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