
Regression Analysis

Assignment 5: Robust Regression
Due on December 2, 2016 sharp 3pm

MAT 3375

Professor Termeh Kousha

Gabriel Lalonde

7546220

Eric Rozon

7801836

1

Regression Analysis : Assignment 5: Robust Regression

1 Introduction

When performing multiple linear regression analysis, Ordinary Least Squares (OLS) works

fantastically well under a certain set of assumptions. In particular, it is often assumed that:

1. the error terms are normally distributed with constant variance (homoskedasticity),

and

2. (relatively) large outliers are not present.

The process used in class to derive the OLS estimates can be generalized to include a wider

class of estimates. In his 2002 paper, Fox introduces the concept of the M -estimation.

2 Definitions

Before proceeding, it is important to define certain terms.

Definition 1. If our model (drawn from a population of size n) is Ŷi = β̂Xi then the error

term is defined to be ei := Yi − Ŷi.

Definition 2. An objective function is a function ρ : R→ R≥0 with the following properties:

• ρ(0) = 0

• ρ(e) ≥ 0

• ρ(e) = ρ(−e)

• ρ(e) > ρ(e′) whenever |e| > |e′|

Example. In the OLS Model, we define ρ(e) = e2. However, this choice is not unique. One

could just as well choose the absolute error ρ(e) = |e| to satisfy the criteria. More abstractly,

Fox details the Huber and Bisquare objective functions in his paper.

Definition 3. The weight function w : R→ R≥0 defined by

w(e) :=
ρ′(e)

e

where ρ′ denotes the derivative of ρ. It is a measure of the influence of the error e in the

derivation of the regression coefficient matrix β̂.In the ordinary least squares case, the weight

function is constant at 2 for every e; every error is equally weighted (that is to say, since

only relative weights matter, we can standardize to w(ei) = 1 for all i).

2

Regression Analysis : Assignment 5: Robust Regression

Remark 1. From our weight function and objective function we derive the estimates by

solving the system of equations

n∑
i=1

w(ei) · ei ·Xi = 0

This method is familiar to us from the OLS parameter derivations; however, Fox details that

since there can be cross dependency between the weights, the residuals, and the estimated

coefficients, one often must use a process called iteratively reweighted least squares, which

is very technical and boring and is therefore skipped in this exposition. The case where

ρ(e) = |e| highlights an interesting example.

Example. First, notice that if ρ(e) = |e| then it is differentiable everywhere but at e = 0,

and its dirivative is

ρ′(e) =
|e|
e

from which we notice that

w(e) =
|e|
e2

=
1

|e|
This difference in weighting from OLS leads to what would seem to be an important obser-

vation. While the weight of all the errors is constant in OLS, the weight of the error terms

decreases as e gets further from 0. That is to say that the absolute error is less reactive to

large outliers than is OLS; one deficiency of this objective function is that the weight is not

defined when e = 0.

Definition 4. Given a set of data with n observations and a model Y = Xβ + ε, the break-

down point is defined to be the minimal number of outliers which could possibly make the

model invalid/useless. For example, in OLS, the breakdown point is 1
n

since one significant

outlier can bend the entire regression line away from what would otherwise be sensible.

Different weighting can change this result so as to make a model more robust to outliers.

Example. Assuming one unique error is larger than all the rest, one could derive the regular

OLS estimates but instead use the weight function:

w(ek) =

1 |ek| <
n

max
i=1
|ei|

0 |ek| =
n

max
i=1
|ei|

which yields a breakdown point of 2
n

since this weight function simply drops the most sig-

nificant outlier.

Definition 5. Assuming again that Y = Xβ + ε, one can always derive the OLS estimator

model Y = Xβ̂; suppose now that an alternative model is proposed, call it Y = Xγ. We

define the efficiency of the new model by

Efficiencyγ =
MSEβ̂
MSEγ

3

Regression Analysis : Assignment 5: Robust Regression

where MSEβ̂ and MSEγ are the mean squared errors of the model with β̂ and γ respectively.

Usually then (but not always), 0 ≤ Efficiency ≤ 1 and an effiency of close to 1 is desirable

for reasons detailed by Montgomery.

Remark 2. Note that in general, there is a tradeoff between having a high breakdown point

and a high level of efficiency. In general, an increase in one entails a decrease in the other,

so one must decide what is more important in an individual instance. This intuitively makes

sense since one must decide whether unusual seeming data points can be ignored, or whether

they may be indicative of a significant trend which must be taken into account. This is

shown in more detail in our example.

3 Technical Details

As previously mentioned, Fox details both the Huber and the Bisquare estimators in his

paper. In all their glory, their respective objective functions and weight functions follow.

3.1 Huber Estimator

The Huber estimator requires that one fix a tuning constant k > 0. The general objective

function (with variable k) for the Huber estimator is

ρHuber =

{
1
2
e2 |e| ≤ k

k|e| − 1
2
k2 |e| > k

while the weight function for the Huber estimator is

wHuber =

{
1 |e| ≤ k

k/|e| |e| > k

3.2 Bisquare Estimator

Similarly to the Huber estimator, a tuning constant k > 0 must be fixed. The general

objective function for the Bisquare estimator is

ρBisquare =

k2

6

(
1−

(
1− (e

k
)2
))

|e| ≤ k

k2

6
|e| > k

and the weight function for the Bisquare estimator is

wBisquare =

(

1− (e
k
)2
)2
|e| ≤ k

0 |e| > k

4

Regression Analysis : Assignment 5: Robust Regression

4 Crime Dataset

To display the usefulness of the concepts explored above, we use a dataset from the United

States which reports on different variables relating to crime as measured on a state by state

basis. The relevant variables to this discussion, with their name in the dataset in parentheses,

are:

• Violent crimes per 100,000 people (Y);

• percentage of the population in a metropolitan area (X1);

• percentage of the population that is white (X2);

• percent of population with a high school education or above (X3)

• percent of population living under poverty line (X4); and

• percent of population that are single parents (X5).

The data is presented on every state as well as Washington DC, so there are n = 51 obser-

vations in this set. The data was gathered from

http://www.ats.ucla.edu/stat/data/crime.dta

as referenced by the Institute for Digital Research and Education, UCLA.

Let’s get started with the importation of the data.

> library(foreign)

> data = read.dta("crime.dta")

> data = data[c("crime","pctmetro","pctwhite","pcths","poverty","single")]

> names(data)=c("y","x1","x2","x3","x4","x5")

> y=data$y

> x1=data$x1

> x2=data$x2

> x3=data$x3

> x4=data$x4

> x5=data$x5

There are 32 possible variable selections. Since it isn’t a large number of possibilities, we

will fit all the possible regressions.

> library(leaps)

> allsubsets=regsubsets(ỹ x1+x2+x3+x4+x5,nbest=10,data)

> s1<-summary(allsubsets)

data.frame(s1$outmat,SSE=s1$rss,R2=s1$rsq,adjR2=s1$adjr2,Cp=s1$cp)

5

Regression Analysis : Assignment 5: Robust Regression

x1 x2 x3 x4 x5 SSE R2 adjR2 Cp

1 (1) * 2882441 0.70371089 0.69766418 41.804747

1 (2) * 5267318 0.45856690 0.44751725 115.280112

1 (3) * 6849058 0.29597824 0.28161045 164.011720

1 (4) * 7202979 0.25959837 0.24448814 174.915615

1 (5) * 9090650 0.06556264 0.04649249 233.072643

2 (1) * * 1773079 0.81774336 0.81014934 9.626559

2 (2) * * 2608856 0.73183297 0.72065935 35.375904

2 (3) * * 2829916 0.70910997 0.69698955 42.186519

2 (4) * * 2848602 0.70718922 0.69498877 42.762212

2 (5) * * 3975976 0.59130530 0.57427635 77.495322

2 (6) * * 4173437 0.57100805 0.55313339 83.578879

2 (7) * * 4574065 0.52982716 0.51023662 95.921754

2 (8) * * 5259429 0.45937787 0.43685194 117.037047

2 (9) * * 6221958 0.36043846 0.33379006 146.691491

2 (10) * * 6873436 0.29347239 0.26403374 166.762783

3 (1) * * * 1557995 0.83985213 0.82962992 5.000048

3 (2) * * * 1689119 0.82637366 0.81529113 9.039858

3 (3) * * * 1689536 0.82633088 0.81524562 9.052681

3 (4) * * * 2583280 0.73446201 0.71751278 36.587921

3 (5) * * * 2599934 0.73275008 0.71569157 37.101027

3 (6) * * * 2829730 0.70912910 0.69056287 44.180785

3 (7) * * * 2983166 0.69335724 0.67378430 48.907979

3 (8) * * * 3474748 0.64282702 0.62002875 64.053061

3 (9) * * * 4076762 0.58094543 0.55419726 82.600417

3 (10) * * * 4124758 0.57601181 0.54894873 84.079138

4 (1) * * * * 1500336 0.84577892 0.83236839 5.223650

4 (2) * * * * 1545329 0.84115404 0.82734135 6.609834

4 (3) * * * * 1642714 0.83114368 0.81646052 9.610172

4 (4) * * * * 2399197 0.75338404 0.73193917 32.916548

4 (5) * * * * 2580919 0.73470469 0.71163553 38.515186

5 (1) * * * * * 1460618 0.84986152 0.83317947 6.000000

There are three models with Cp between p and 2p that looks promising. There is Y =

X1 + X4 + X5,Y = X1 + X2 + X4 + X5 and Y = X1 + X2 + X3 + X4 + X5 where their

Cp statistic is 5.0000, 5.2237 and 6.0000 respectively. The third model that has Cp=p is

obviously the full model, but the goal of this analysis is to check what is the smallest model

that still does the job well without adding too much bias. It is a good idea to reduce the

model here to not overfit our data or get multicolinearity. We have choosen the model

Y = X1 +X4 +X5 since it is the smallest one that still has a minimal amount of bias.

Just to be on the safe side, we will do a multicolinearity check.

6

Regression Analysis : Assignment 5: Robust Regression

> library(car)

> lm=lm(ỹ x1+x4+x5)

> vif(lm)

x1 x4 x5

1.144807 1.527117 1.631659

Multicolinearity is not a problem. Now let’s analyse this model.

> pdf("ols.pdf",height=7,width=7)

> par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))

> plot(lm)

> dev.off()

0 500 1000 1500 2000 2500

−
60

0
−

20
0

0
20

0

Fitted values

R
es

id
ua

ls

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
● ●

●

●

●●

●

●
●

●

●
●
●

●

●
●

●

●

●

Residuals vs Fitted

25

9 51

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●●

●

●

●●

●

●
●

●

●
●

●
●

●
●

●

●

●

−2 −1 0 1 2

−
3

−
1

0
1

2
3

4

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

51

25

9

0 500 1000 1500 2000 2500

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

Scale−Location
5125

9

0.0 0.1 0.2 0.3 0.4 0.5

−
4

−
2

0
2

4

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●
●●

●

●

● ●

●

●
●

●

●
●
●

●

●●

●

●

●

Cook's distance

1
0.5

0.5
1

Residuals vs Leverage

51

25

9

lm(y ~ x1 + x4 + x5)

Given the cook’s distance graph, sample 25 and 51 are outliers. The standardized residuals

graph doesn’t show any problematic patterns. The qq-plot is heavy-tailed meaning that our

data set contains extremes that are outside of the Normal distribution. In other words, there

7

Regression Analysis : Assignment 5: Robust Regression

are outliers. Samples 9 is probably problematic.

4.1 Finding the robust regressions

Firstly, we will find the Huber Robust regression model.

> library(MASS)

> rlm.huber=rlm(ỹ x1+x4+x5,data=data,psi=psi.huber)

> summary(rlm.huber)

Call: rlm(formula = y ˜ x1 + x4 + x5, data = data, psi = psi.huber)

Residuals::

Min 1Q Median 3Q Max

-556.886 -91.966 4.484 97.611 478.691

Coefficients:

Value Std. Error t value

(Intercept) -1572.1291 135.2622 -11.6228

x1 6.8948 1.1479 6.0066

x4 19.4760 6.3499 3.0671

x5 127.2305 14.1831 8.9706

> #let's get T(0.025,49) to check the t value of the regressors

> abs(qt(0.025,47))

[1] 2.011741

> #get the 15 smallest weights.

> data.frame(resid=rlm.huber$resid, weight=rlm.huber$w

+)[order(rlm.huber$w),][1:15,]

resid weight

25 -556.88611 0.3377288

51 478.69090 0.3929858

9 441.59864 0.4259286

18 -292.88002 0.6421215

39 -263.44268 0.7139697

12 250.46056 0.7509303

14 224.94344 0.8361726

20 214.61056 0.8764274

47 -209.39385 0.8982353

48 -201.99999 0.9311438

1 48.29970 1.0000000

2 85.38794 1.0000000

3 106.04620 1.0000000

4 -136.27802 1.0000000

8

Regression Analysis : Assignment 5: Robust Regression

5 38.55966 1.0000000

All regressor are valid with a confidence level of 95%. Samples 9,25 and 51 are the samples

we tought were problematic in the OLS analysis. Those three samples are the most down-

weighted ones by the Huber weighting function. Then there are 7 other samples that are

slightly reduced. The rest of the samples kept all there weight. This looks like a very good

model that handled properly the outliers. Let’s see now how things differs with bisquare

weighting.

> rlm.bisquare=rlm(ỹ x1+x4+x5,data=data,psi=psi.bisquare)

Warning message:

In rlm.default(x, y, weights, method = method, wt.method = wt.method, :

'rlm' failed to converge in 20 steps

> #Since the rlm didn't converge, let's give it more steps.

> rlm.bisquare=rlm(ỹ x1+x4+x5,data=data,psi=psi.bisquare,maxit=40)

> summary(rlm.bisqure)

Call: rlm(formula = y ˜ x1 + x4 + x5, data = data, psi = psi.bisquare,

maxit = 40)

Residuals:

Min 1Q Median 3Q Max

-638.51 -107.15 -25.86 99.48 444.19

Coefficients:

Value Std. Error t value

(Intercept) -1704.2518 140.4320 -12.1358

x1 6.5479 1.1917 5.4944

x4 21.3231 6.5926 3.2344

x5 139.3921 14.7252 9.4662

Residual standard error: 155.8 on 47 degrees of freedom

> #All the weights in increasing order

> data.frame(resid=rlm.bisquare$resid, weight=rlm.bisquare$w

+)[order(rlm.bisquare$w),]

resid weight

25 -638.513036 0.05515601

9 444.190424 0.39646535

18 -364.712227 0.56308487

51 327.967349 0.63680630

12 269.297360 0.74630910

39 -250.884153 0.77766500

14 221.225660 0.82470968

9

Regression Analysis : Assignment 5: Robust Regression

20 215.068316 0.83389721

47 -213.120171 0.83676666

48 -196.008408 0.86097093

35 -190.361918 0.86859479

13 186.257471 0.87401470

22 -185.731789 0.87471461

16 183.422599 0.87769537

29 182.014928 0.87951363

6 -162.108773 0.90378498

40 156.944092 0.90965304

4 -150.374740 0.91692521

49 -145.108709 0.92252130

24 138.355040 0.92942725

19 131.813769 0.93584267

44 -124.287874 0.94284348

10 -115.999529 0.95013692

21 -109.221377 0.95571738

31 105.876761 0.95837055

46 -105.085335 0.95897484

28 104.147238 0.95970820

43 -98.965031 0.96357904

26 -98.046522 0.96424201

27 94.821605 0.96652963

3 86.603520 0.97203637

33 86.562334 0.97206606

41 85.716816 0.97261134

37 -77.843877 0.97738234

45 -73.782415 0.97966398

2 68.892811 0.98225702

17 -62.868566 0.98522205

34 57.831739 0.98747791

7 -55.487872 0.98847032

38 -52.638493 0.98962222

23 -49.846747 0.99069148

42 47.835262 0.99142464

8 42.175798 0.99333383

15 -41.153683 0.99365189

30 -40.198876 0.99393896

11 37.071471 0.99485240

32 -27.063069 0.99725752

36 -25.858571 0.99749359

10

Regression Analysis : Assignment 5: Robust Regression

5 18.589051 0.99870109

50 6.747469 0.99982895

1 4.202759 0.99993311

All regressors in the resulting model are valid with a confidence level of 95%. With the

bisquare weighting function, the weigth are far more ”severe”. All samples are weighted

down. Sample 25 is almost gone and samples 9 and 18 have been moderatly lightened.

However, sample 51 is a severe outlier and we don’t think that the bisquare weigthing

function has sufficiently attenuated its influence on the model.

5 Tuning of the Weighting Functions

Disclaimer: Altough this section’s name might make an impression of ”these guys knows

what they are doing”, please note that this is just an attempt to optimize the weighting

functions for our dataset using our limited knowledge on the subject. The following approach

will be intuition based and not be rigourous. Now let’s have some fun.

In order to tune those functions, we will run simulations to see how our tunings influence

the efficiency and the breakdown point of the weighting functions. We will try to make our

simulations data as close as possible to the real datas, since we want to specifically tune

those functions for the crime dataset.

> lm$coefficients

(Intercept) x1 x4 x5

-1666.435892 7.828935 17.680244 132.408052

> (summary(lm)$sigma)**2

[1] 33148.82

The simulation dataset that we will be successively recreated will be of size n = 51 and

be generated by this distribution obtained from the OLS made in the crime data example:

Y = −1666.435892+7.828935X1 +17.680244X4 +132.408052X5 +N(0, 33148.82). We won’t

regenerate X1, X4 and X5 since it will make the simulation further from the real dataset

without much improvement in the randomness of the simulation samples.

5.1 Tuning of the Huber Weighting Function

Let’s first check how the efficiency reacts to changes in k. What we will measure here is the

finite sample efficiency that is defined by MSERLM

MSEOLS
. We made the following R script to take

1000 samples of 100 different k values from 0.5 to 2.5. (Below 0.5, many iterations does’t

completes.)

> avg.eff=matrix(1,100)

> k=matrix(1,100)

>

11

Regression Analysis : Assignment 5: Robust Regression

> #scan thru all k's

> for(j in 1:100)

+ {

+ #generates k based on j

+ kj=0.5+j/50

+ efficiencies=matrix(1,1000)

+ #make new dataset

+ noresid=-1666.435892+7.828935*data$x1+

+ 17.680244*data$x4+132.408052*data$x5

+ #Do 1000 samples per k

+ for(i in 1:1000){

+ #create OLS

+ new.y=noresid+rnorm(51,0,182.0682)

+ new.lm=lm(new.ỹ x1+x4+x5)

+ lm.mse=anova(new.lm)$"Mean Sq"[4]

+ #create RML

+ new.rlm=rlm(new.ỹ x1+x4+x5,

+ data=data.frame(new.y=new.y,x1=data$x1,x4=data$x4,x5=data$x5),

+ psi=psi.huber,k=kj,maxit=100)

+ rlm.mse=(summary(new.rlm)$sigma)**2

+ #compute the efficiency

+ efficiencies[i]=rlm.mse/lm.mse

+ }

+ k[j]=kj

+ #make the mean of efficiencies for a given k

+ avg.eff[j]=mean(efficiencies)

+ }

This has given us the following results.

> pdf("efficiencyHuber.pdf",height=7,width=7)

> plot(avg.eff̃ k,ylab="Avg. Efficiency (1000 samples)",

+ main="Huber Efficiency vs. Tuning Variable K")

> dev.off()

12

Regression Analysis : Assignment 5: Robust Regression

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●●

●●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●
●
●

0.5 1.0 1.5 2.0 2.5

0.
85

0.
90

0.
95

Huber Efficiency vs. Tuning Variable K

k

A
vg

. E
ffi

ci
en

cy
 (

10
00

 s
am

pl
es

)

In this plot, we can see that there is a lot of variance in the efficiency even though each point

is the average of 1000 samples. This might be due to the small size of the dataset. We can

see that the efficiency increase with k. It looks likes that after k = 2. the efficiency becomes

steady. There is still the breakdown point response to check in order to make our choice of k.

Statisticians sure do have delicate formulas to obtain a precise breakdown point value, but

as of Dec 2nd, 4:43 am, we (well ”I”) will cut corners a bit. This time, we will generate

a dataset, find the RLM regression, add a random obvious outlier in the first or fourth

quartile, redo the RLM regression, check if the new model is still ”close” to the original one

and repeat until we obtain the breakdown in j steps. This process is repeated 1000 times for

every k value, we do the average of the j’s. The Y in the crime dataset varies between 326.5

and 2922.0, therefore a Yi = 6000 in the first or fourth quartile should be considered as an

outlier. This will be the outlier value we will use. The breakdown criteria will be the the

t-test failure with 95% confidence of one regressor or the divergence of the RLM regression.

13

Regression Analysis : Assignment 5: Robust Regression

This is the script.

> avg.break=matrix(1,100)

> k=matrix(1,100)

> #samples every k

> for(j in 1:100){

+ breakpoint=matrix(1,100)

+ #do 100 samples for every k

+ for(i in 1:100){

+ #generates k given j

+ a=0.5+j/50

+ t.value=qt(0.05/2,47,lower=F)

+ #generate new datas

+ new.data=data.frame(new.y=-1666.435892+7.828935*data$x1+

+ 17.680244*data$x4+132.408052*data$x5+rnorm(51,0,182.0682),

+ new.x1=data$x1, new.x4=data$x4, new.x5=data$x5)

+ #order the data to be able to do quartile insertions

+ new.data=new.data[order(new.data$new.y),]

+ #generate a random sequence of indexes

+ #in the 1st and 4th quartile

+ outSequence=c(1,2,3,4,5,6,7,8,9,10,11,12,13,

+ 40,41,42,43,44,45,46,47,48,49,50,51)

+ outSequence=outSequence[sample.int(length(outSequence))]

+ #make the "perfect" RML for later comparison

+ rlm.orig=rlm(new.ỹ new.x1+new.x4+new.x5,new.data,

+ psi=psi.huber,k=a,maxit=100)

+ count=0

+ #This loop until the model breakdown

+ repeat{

+ #insert the outlier

+ new.data$new.y[outSequence[count]]=6000

+ #update the RML model

+ rlm.dyn=rlm(new.ỹ new.x1+new.x4+new.x5,new.data,

+ psi=psi.huber,k=a,maxit=100)

+ #check if the model is in breakdown state

+ if(count>=25 || !rlm.dyn$converged||

+ min(abs(summary(rlm.dyn)[[4]][,3]))<t.value){

+ break

+ }

+ count=count+1

+ }

14

Regression Analysis : Assignment 5: Robust Regression

+ breakpoint[i]=count

+ }

+ k[j]=a

+ #de average for avery k

+ avg.break[j]=mean(breakpoint)

+ }

#make the breakdown a percentage

> avg.break=avg.break/51

It produces the following results.

> pdf("breakpointHuber.pdf",height=7,width=7)

> plot(avg.break̃ k,ylab="Avg. Breakpoint (100 samples)",

+ main="Huber Breakpoint vs. Tuning Variable k")

> dev.off()

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0.5 1.0 1.5 2.0 2.5

0.
06

0.
08

0.
10

0.
12

Huber Breakpoint vs. Tuning Variable k

k

A
vg

. B
re

ak
po

in
t (

10
0

sa
m

pl
es

)

15

Regression Analysis : Assignment 5: Robust Regression

Once again the variance is important. As the value k increase, the breakpoint decrease. In

the current situation, we have 2 outliers in the crime dataset and maybe 1 or two potential

outliers. Therefore, a breakpoint of 10% (can handle up to 5 outliers) is ideal in our case.

This corresponds roughly to k = 1.5. This k value give us an efficiency arround 92.5%

according to our previous table which is decent. Let’s see how the bisquare RLM compares.

5.2 Tuning of Tuney’s Bisquare Weighting Function

We will apply the same techniques to the bisquare weigthing function since it behave similarly

and has also only one tuning variable. Here’s the execution of the script.

> avg.eff=matrix(1,100)

> c=matrix(1,100)

>

> #scan thru all c's

> for(j in 1:100)

+ {

+ #generates c based on j

+ cj=1 +j/10

+ efficiencies=matrix(1,1000)

+ #make new dataset

+ noresid=-1666.435892+7.828935*data$x1+

+ 17.680244*data$x4+132.408052*data$x5

+ #Do 1000 samples per c

+ for(i in 1:1000){

+ #create OLS

+ new.y=noresid+rnorm(51,0,182.0682)

+ new.lm=lm(new.ỹ x1+x4+x5)

+ lm.mse=anova(new.lm)$"Mean Sq"[4]

+ #create RML

+ new.rlm=rlm(new.ỹ x1+x4+x5,

+ data=data.frame(new.y=new.y,x1=data$x1,x4=data$x4,x5=data$x5),

+ psi=psi.bisquare,c=cj,maxit=100)

+ if(!new.rlm$converged){

+ print(cj)}

+ rlm.mse=(summary(new.rlm)$sigma)**2

+ #compute the efficiency

+ efficiencies[i]=rlm.mse/lm.mse

+ }

+ c[j]=cj

+ #make the mean of efficiencies for a given k

+ avg.eff[j]=mean(efficiencies)

16

Regression Analysis : Assignment 5: Robust Regression

+ }

[1] 1.3

[1] 1.4

[1] 1.4

[1] 1.8

[1] 2.1

[1] 2.2

[1] 2.3

[1] 5.4

[1] 6.4

> pdf("efficiencyBisquare.pdf",height=7,width=7)

> plot(avg.eff̃ c,ylab="Avg. Efficiency (1000 samples)",

+ main="Bisquare Efficiency vs. Tuning Variable C")

> dev.off()

17

Regression Analysis : Assignment 5: Robust Regression

●

●

●
●

●

●●

●
●

●

●
●

●●

●

●

●

●
●

●●●

●

●

●

●

●
●●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●
●

●●●
●
●

●●

●

●

●●

●

●
●

●

●●
●
●●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

2 4 6 8 10

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

Bisquare Efficiency vs. Tuning Variable C

c

A
vg

. E
ffi

ci
en

cy
 (

10
00

 s
am

pl
es

)

The efficiency increase with the variable c. From c = 1.5 to c = 6 the growth is agressive

but for c > 6, the slope is almost horizontal. Let’s check the breakpoint response as we did

previously.

> avg.break=matrix(1,100)

> c=matrix(1,100)

> #samples every c

> for(j in 1:100){

+ breakpoint=matrix(1,100)

+ #do 100 samples for every c

+ for(i in 1:100){

+ #generates c given j

+ a=1+j/10

+ t.value=qt(0.05/2,47,lower=F)

+ #generate new datas

18

Regression Analysis : Assignment 5: Robust Regression

+ new.data=data.frame(new.y=-1666.435892+7.828935*data$x1+

+ 17.680244*data$x4+132.408052*data$x5+rnorm(51,0,182.0682),

+ new.x1=data$x1, new.x4=data$x4, new.x5=data$x5)

+ #order the data to be able to do quartile insertions

+ new.data=new.data[order(new.data$new.y),]

+ #generate a random sequence of indexes

+ #in the 1st and 4th quartile

+ outSequence=c(1,2,3,4,5,6,7,8,9,10,11,12,13,

+ 40,41,42,43,44,45,46,47,48,49,50,51)

+ outSequence=outSequence[sample.int(length(outSequence))]

+ #make the "perfect" RML for later comparison

+ rlm.orig=rlm(new.ỹ new.x1+new.x4+new.x5,new.data,

+ psi=psi.bisquare,c=a,maxit=100)

+ count=0

+ #This loop until the model breakdown

+ repeat{

+ #insert the outlier

+ new.data$new.y[outSequence[count]]=6000

+ #update the RML model

+ rlm.dyn=rlm(new.ỹ new.x1+new.x4+new.x5,new.data,

+ psi=psi.bisquare,c=a,maxit=100)

+ #check if the model is in breakdown state

+ if(count>=25 || !rlm.dyn$converged||

+ min(abs(summary(rlm.dyn)[[4]][,3]))<t.value){

+ break

+ }

+ count=count+1

+ }

+ breakpoint[i]=count

+ }

+ c[j]=a

+ #do average for avery c

+ avg.break[j]=mean(breakpoint)

+ }

> #generate the pdf plot

> pdf("breakpointBisquare.pdf",height=7,width=7)

> #make the breakdown a percentage

> avg.break=avg.break/50

> plot(avg.break̃ c,ylab="Avg. Breakpoint (100 samples)",

+ main="Bisquare Breakpoint vs. Tuning Variable C")

> dev.off()

19

Regression Analysis : Assignment 5: Robust Regression

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

Bisquare Breakpoint vs. Tuning Variable C

c

A
vg

. B
re

ak
po

in
t (

10
0

sa
m

pl
es

)

The breakpoint response to c for the bisquare weighting function forms a ”mountain” where

the summit is arround c = 4. It is evident that the bisquare function is more robust than

the Huber one. Now, let’s select the perfect c for our dataset. We only need a break point

of at least 10%. The bigger c is, the most efficient the weighting will be. Therefore we have

choosen c = 10. This gives us a breakpoint around 10% and an efficiency of roughly 95%

which is really good.

6 Tuning Improvements

A comparison between the default RML model and the tuned one is made here in order to

see if the many hours of analysis we did were useful.

6.1 Huber MLR comparison

20

Regression Analysis : Assignment 5: Robust Regression

> rlm.huber2=rlm(ỹ x1+x4+x5,data,psi=psi.huber,k=1.5,maxit=100)

> #previously obtained weights

> data.frame(resid=rlm.huber$resid,weight=rlm.huber$w

+)[order(rlm.huber$w),][1:15,]

resid weight

25 -556.88611 0.3377288

51 478.69090 0.3929858

9 441.59864 0.4259286

18 -292.88002 0.6421215

39 -263.44268 0.7139697

12 250.46056 0.7509303

14 224.94344 0.8361726

20 214.61056 0.8764274

47 -209.39385 0.8982353

48 -201.99999 0.9311438

1 48.29970 1.0000000

2 85.38794 1.0000000

3 106.04620 1.0000000

4 -136.27802 1.0000000

5 38.55966 1.0000000

> #Tuned weights

> data.frame(resid=rlm.huber2$resid,weight=rlm.huber2$w

+)[order(rlm.huber2$w),][1:15,]

resid weight

25 -553.96427 0.3767017

51 473.07348 0.4411765

9 441.74348 0.4724198

18 -291.82818 0.7150476

39 -265.89386 0.7848578

12 251.65131 0.8292456

14 223.35880 0.9343253

47 -211.62314 0.9861178

20 210.76155 0.9901668

1 45.22131 1.0000000

2 86.07243 1.0000000

3 109.47739 1.0000000

4 -137.68640 1.0000000

5 37.24425 1.0000000

6 -160.43328 1.0000000

We can see that marginal points attenuation is less severe. In our opinion, the tuned Huber

21

Regression Analysis : Assignment 5: Robust Regression

model is better than the untuned one since it is only weighting down (mostly) the three

points we had already identified as problematic.

6.2 Tukey’s Bisquare MLR Comparison

> #previously obtained weight

> data.frame(resid=rlm.bisquare$resid,weight=rlm.bisquare$w

+)[order(rlm.bisquare$w),][1:15,]

resid weight

25 -638.5130 0.05515601

9 444.1904 0.39646535

18 -364.7122 0.56308487

51 327.9673 0.63680630

12 269.2974 0.74630910

39 -250.8842 0.77766500

14 221.2257 0.82470968

20 215.0683 0.83389721

47 -213.1202 0.83676666

48 -196.0084 0.86097093

35 -190.3619 0.86859479

13 186.2575 0.87401470

22 -185.7318 0.87471461

16 183.4226 0.87769537

29 182.0149 0.87951363

> #Tuned weight

> rlm.bisquare2=rlm(ỹ x1+x4+x5,data,psi=psi.bisquare,c=10,

+ maxit=100)

> data.frame(resid=rlm.bisquare2$resid,weight=rlm.bisquare2$w

+)[order(rlm.bisquare2$w),][1:15,]

resid weight

25 -539.0396 0.7584004

9 430.6479 0.8419280

51 413.8742 0.8534785

18 -303.3980 0.9198587

39 -284.2390 0.9294671

12 271.0763 0.9357479

47 -226.6980 0.9548373

13 214.2085 0.9596274

14 209.9291 0.9612052

48 -201.9518 0.9640715

35 -201.4901 0.9642359

16 189.2411 0.9684188

22

Regression Analysis : Assignment 5: Robust Regression

20 186.1606 0.9694281

40 181.4795 0.9709327

22 -179.7002 0.9715031

Now it feels that the bisquare approach is too conservative. The two confirmed outliers (25

and 51) are barely attenuated. We don’t think that this version of the bisquare in this case

is an improvement. The un-tuned version wasn’t a success either.

7 Conclusion

The previous example, in all of its glory, highlights the importance of understanding when

and how robust regression should be used. While it is certainly possible to derive a least

squares model which ignores outliers by removing them from one’s dataset, it is much more

efficient and practical to simply use a robust regression sush as the Huber or Bisquare to

generate a more realistic model than would be obtained using Ordinary Least Squares. A

word of caution, however; regression analysis is a careful balance of art and science. One

must be prudent to keep in mind the practical implications of eliminating/downweighting

”unwanted” datapoints. While this certainly makes ones model work more nicely, it is often

unwise to remove points simply because they don’t fit with the trend(s) in the rest of the

data. Nonetheless, Robust Regression is an important tool when used effectively.

8 References

Douglas C. Montgomery, Elizabeth A. Peck, & G. Geoffrey Vining. Introduction to Linear

Regression Analysis, 5th Edition ISBN: 978-0-470-54281-1

Fox, John. Robust Regression. Appendix to An R and S-PLUS Companion to Applied

Regression January 2002.

http://www.saedsayad.com/docs/RobustRegression.pdf

R Data Analysis Examples: Robust Regression.

http://www.ats.ucla.edu/stat/r/dae/rreg.htm

23

