
Cournot-Nash equilibria and optimal transport
uAlberta applied math - Term project submitted to Dr. Brendan Pass

Eric Rozon - University of British Columbia

December 11, 2020



Contents

1 Outline 2

2 Game theory essentials 3

3 Games and measures 4

4 Connection to Optimal Transport 5

5 Extensions 6

6 Conclusion 7

1



1 Outline

This paper is intended as companion reading for Adiren Blanchet and Guillaume Carlier’s
paper Optimal Transport and Cournot-Nash Equilibira [BC16]. We assume a reasonable
backgrund in the theory of OT, but no background in game theory or economics. We pro-
vide a thorough background so that Blanchet and Carlier’s paper should be readily accessi-
ble upon reading our report. This project is completed as part of the course requirements for
Optimal Transport + Economics, offered to students at universities forming the Pacific Insti-
tute for the Mathematical Sciences, and taught by Professor Brendan Pass of the University
of Alberta.

In section 2, we begin with the bare essentials of game theory. We provide basic definitions
and intuitive motivations for concepts, and conclude with Nash’s theorem on the existence
of equilibria in finite games. Section 3 extends the background on game theory to account
for the kinds of games considered in [BC16]. We consider players and actions whose traits
vary continuously, naturally introducing the need for measures. Section 2 concludes with
results analogous to Nash’s theorem, originally proved in [MC84].

Section 4 combines the basic game theory notions presented in sections 2 and 3 with the
theory of optimal transport, as presented by Blanchet and Carlier. We explore the natural
links between the two fields of studies, and prove equivalence between equilibria and opti-
mal transport plans. We conclude by linking a well known charactarization of solutions to
a wide class of OT problems wtih purity of strategies in game theory.

Finally, in section 5, we perform a high level investigation of some of the extensions pro-
posed by Blanchet and Carlier. We make no claim to fully cover every detail in the original
paper, but rather provide a high level overview of some of the areas of exploration put for-
ward in [BC16]. We discuss rivalry of use/strategy exhaustion, how it can be accounted
for in the language of measure theory, and why its introduction fundamentally changes the
analysis required to find equilbira in games. Section 6 concludes.
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2 Game theory essentials

We now give a simplified overview of game theory. We define games, payoff functions,
pure/mixed strategies, and Cournot-Nash equilibria. We conclude with Nash’s theorem on
the existence of Cournot-Nash equilibria.

Definition 2.1. Let X = {1, 2, . . . , n} and Y be finite sets. A function Φ : X × Y n → R is
called a payoff function. Together, the triple (X, Y,Φ) is called a finite game.

Remark. The players in a game are indexed by X , and their available actions are the elements
of Y . The payoff function Φ gives the reward Φ(x, (y1, . . . , yn)) to player x ∈ X given each
player i ∈ X takes action yi.

Example. Let X = Y = {1, 2}. We have a two player game, where each player has two
possible actions. The payout function Φ can be most easily represented by “game matrices”
Ax. For concreteness,

A1 =

(
3 6
2 1

)
, A2 =

(
4 3
5 2

)
encode that Φ(1, ([1, 2], [2, 1])) = 2 and Φ(2, ([1, 2], [2, 1])) = 5. That is, the payouts to players
1 and 2 given that they play actions 2 and 1 are 2 and 5, respectively.

Definition 2.2. A strategy is a probability distribution on the set of actions, σ ∈ P(Y ). A
strategy is called pure when it assigns all mass to a single y ∈ Y . Otherwise, a strategy is
called mixed. A matching of players to strategies is a function σ(·) : X → P(Y ).

Remark. The domain of Φ is enlarged toX×P(Y )n. The payout to player x0 given all players’
strategies σi is the expected payout to x0. Symbolically, Φ(x0, (σ1, . . . , σn)) = E [Φ(x0, strat RVs)]
where “strat RVs” is a term representing an n-tuple of independent random variables Si
with respective laws σi for 1 ≤ i ≤ n.

Definition 2.3. A collection of strategies σ1, . . . , σn is called a Cournot–Nash equilibrium when
no player is strictly better of by unilaterally changing their strategy. That is,

σi ∈ argmaxτ∈P(Y ) Φ(i, (σ1, . . . , σi−1, τ, σi+1, . . . , σn))

for each i.

Example. In the example above, each player always choosing strategy 1 is a Cournot-Nash
equilibrium which employs pure strategies.

Theorem 2.4. Every finite game has at least one Cournot-Nash equilibrium.
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3 Games and measures

We generalize from n players to a distribution on player types. We define payoff functions,
games, and Cournot-Nash equilibria in this more general context.

Definition 3.1. Let X and Y be a compact subsets of Euclidean space.1 A pair (X,µ) where
µ ∈ P(X) is called a player space. A function Φ : X × Y × P(Y )→ R is a payoff function. A
triple ((X,µ), Y,Φ) defines a game.

Remark. X and Y index player types and actions. Φ(x, y, ν) gives the payoff to player x
taking action y, given that ν ∈ P(Y ) is the relative abundance of different actions taken.
Since the payoff function Φ depends on the aggregate of actions (and not on who plays
which action), we call such games anonymous.

Remark (Many players). In some sense, we have a generalization of the finite game frame-
work developed above. One might think of the set of n playersX = {1, 2, . . . , n} as being the
player space (X,

∑n
i=1

1
n
δi). However, we will throughout assume that we are in the limit of

a large number of players, so that any individual’s choice of strategy has negligible impact
on the action distribution ν ∈ P(Y ).

Definition 3.2. Let ((X,µ), Y,Φ) be a game. A strategy assignment is a measure γ ∈ P(X ×Y )
with first marginal µ. A strategy assignment γ is called pure whenever γ = (id, T )#µ for
some T : X → Y .

Remark. Any strategy assignment γ naturally induces a distribution of actions via its second
marginal. We will denote ν := (πY )#γ when unambiguous. We interpret γ as encoding that
a player is of type in A and plays action in B with probability γ(A,B).

Definition 3.3. A strategy assignment γ is a Cournot–Nash equilibrium whenever

γ ({(x, y) ∈ X × Y : y ∈ argmaxz∈Y Φ(x, z, ν)}) = 1.

Varying a single player x’s strategy z while leaving the overall distribution of strategies ν
fixed in the argmaxz∈Y Φ(x, z, ν) is justified by our remark about there being many players.

Theorem 3.4 (Mas-Colell). Let ((X,µ), Y,Φ) be a game. Then there exists a Cournot-Nash equilib-
rium γ. Furthermore, if Y is finite and µ ({x}) = 0 for all x ∈ X , there exists a pure Cournot-Nash
equilibrium.

Proof. The proofs of the first and second claims rely on the Schrauder and Kakutani fixed
point theorems, respectively. As such, they are non-constructive. See [MC84] for details.

1Blanchet and Carlier work in somewhat more generality, but for our purposes, Euclidean space suffices.
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4 Connection to Optimal Transport

Definition 4.1. We assume that the payoff function Φ(x, y, ν) is additively separable as fol-
lows:

Φ(x, y, ν) = b(x, y) + V [ν](y).

We assume b is continuous on the domain X × Y .

Remark. The map b parametrizes the inherent benefit to a player of type xwhen taking action
y in isolation. On the other hand, V [ν](y) is the additional benefit to any individual of taking
action y given the population’s action distribution ν. V is called the interaction map.

Lemma 4.2. Let ((X,µ), Y, b + V) be a game. Let γ ∈ P(X × Y ), and denote its second marginal
by ν. We claim γ is a Cournot-Nash equilibrium if and only if there exists a continuous ϕ : X → R
satisfying b(x, y) + V [ν](y) ≤ ϕ(x) for every (x, y) ∈ X × Y and equality γ-almost everywhere.

Proof. One direction is obvious. If we assume γ is a Cournot-Nash equilibrium, then it suf-
fices to take ϕ(x) := max

y∈Y
b(x, y) + V [ν](y). The converse is less obvious, but [BC16] take it as

intuitively clear.

Proposition 4.3. Let ((X,µ), Y, b+V) be a game. If γ is a Cournot-Nash equilibrium, then γ solves
the optimal transport problem

γ ∈ argmaxγ̂∈Γ(µ,ν)

∫
X×Y

b(x, y)dγ̂(x, y)

Proof. Consider the dual problem to the OT problem max
∫
b(x, y). It would involve finding

Kantorovich potentials ϕ, ψ. In our setup, we have essentially fixed the second Kantorovich
potential to be ψ = V [ν], from which we conclude by duality in OT.

Corollary 4.4. In a similar spirit to the preceding proposition, we carry over classic results from
OT. Let ((X,µ), Y, b + V) be a game. Suppose µ is absolutely continuous and that b satisfies the
generalized Spence-Mirrlees condition. Then if there exists a Cournot-Nash equilibrium γ, it is pure
and unique.

Remark. The imposition of the interaction map V [ν] as the second Kantorovich potential
restricts us from being able to conclude that optimal transport plans (and thus Cournot-
Nash equilibria) exist. All we can conclude is that if a Cournot-Nash equilibrium exists, it is
unique and pure.
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5 Extensions

Here we have some extensions proposed by Blanchet and Carlier.

Remark. In many practical applications, there is exclusivity of use for certain strategies.
Blanchet and Carlier account for exclusivity of use by introducing a reference measure m0

on the space of actions Y , and then insisting that we restrict action distributions to those
which are absolutely continuous with respect to the reference measure. In [BC16], the au-
thors use the exapmle of choice of holiday destination – not everyone can go to the same
beach in Mexico due to overcrowding. Thus not all strategy assignments are admissible.
The following definition formalizes this remark.

Definition 5.1. Let ((X,µ), Y,Φ) be a game, and fix a measure m0 on Y . Let

D = {ν ∈ P(Y ) : ν � m0} .

A strategy assignment γ is admissible (given m0) whenever its first marginal is µ, and its
second marginal is an element of D.

Remark. In [BC16], the authors note that the requirement that a strategy assignment γ be
admissible wreaks havoc on standard proofs of the existence of optimal transport plans and
thus Cournot-Nash equilibria. While continuity of the map ν 7→ V [ν] allows us to apply
fixed point theorems (see [MC84]), here our restriction makes the problem of existence more
delicate.

Definition 5.2. Assume D is convex. The map ν 7→ V [ν] is a differential on D precisely when
there exists a map E : D → R satisfying, for every (ρ, ν) ∈ D2, we have

1. V [ν] ∈ L1(ρ), and

2. lim
ε→0+

E[(1−ε)ν+ερ]−E[ν]
ε

=
∫
Y
V [ν] d(ρ− ν).

In this case, V [ν] is called the first variation of E .

Theorem 5.3. Suppose V [ν] is the first variation of some E : D → R. Then under various technical
conditions, if ν solves

sup
ν∈D

[(
sup

γ∈Γ(µ,ν)

∫
b(x, y)dγ(x, y)

)
+ E [ν]

]
and γ is an optimal coupling of µ and ν, then γ is a Cournot-Nash equilibrium.

Remark. This theorem, proved in [BC16], demonstrates (at a high level) the approach/philosophy
employed throughout the entire paper. First, one finds ν by minimization of the expression
above. Having determined the optimal strategy distribution ν, one finds the optimal cou-
pling between players and strategies, γ, using optimal transport. Earlier results guarantee
that the obtained strategy assignment is a Cournot-Nash equilibrium.
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Remark (Computability). A major benefit of the variational approach employed is that it
is feasible to numerically compute Cournot-Nash equilibria for sufficiently well behaved
E . This is contrasted with general proofs of existence, both in the case of finite games and
the case covered by Mas-Colell in [MC84]. All of the aforementioned contexts make use of
fixed point theorems, so that existence is guaranteed but we are presented with no way of
determining what Cournot-Nash equilibria look like.

Remark (Efficiency vs. stability). From the perspective of economics, two important concepts
should be kept in mind: stability and efficiency. Cournot-Nash equilibria are defined as sta-
ble points, with no discussion of their efficiency. Blanchet and Carlier give examples to show
that, in general, Cournot-Nash equilibria are not efficient; those familiar with the prisoner’s
dilemma in classical game theory will not find inefficiency in equilibria surprising. Blanchet
and Carlier propose a transfer mechanism to ensure efficiency at Cournot-Nash equilibria,
and conclude with a nice discussion of the cost of anarchy.

6 Conclusion

In this companion reading to [BC16], we provide the necessary tools/framework for analysing
game theoretic concepts in the language of optimal transport. While it is not a priori obvi-
ous that game theory and OT might share such a strong connection, this result is in keep-
ing with the surprising breadth of applicability of OT. Blanchet and Carlier argue that “the
cross-fertilisation between economics and optimal transport will rapidly develop,” citing a
recent examples the applications of OT to hedonics and matching problems, multidimen-
sional screening, and urban economics. Furthermore, the fact that Blanchet and Carlier
propose methods which are computable lends even more creedence to notion that OT will
become more prevalent in applied domains. The research paper by Blanchet and Calier, as
well as this companion reading, should help to bridge the gap between pure math, and in
particular, OT researchers, and the more applied researchers who might seek to use OT in
their economic and game-theoretic pursuits.
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